Abstract

Mercury pollution is a major environmental problem that arises as a result of natural processes as well as from anthropogenic sources. In response to toxic mercury compounds, microbes have developed astonishing array of resistance systems to detoxify them. To address this challenge, this study was aimed in screening bacterial isolates for their tolerance against varied concentrations of phenylmercuric acetate. Mercury transformation by bacteria being sensitive to factors such as available carbon source, etc. that affect mer-mediated transformation, screened mercury tolerant bacteria were also studied for their tolerance to different antimicrobials and carbon sources, followed by identification using biochemical as well as 16S rRNA approach. Following identification, gene encoding organomercurial lyase catalyzing protonolytic cleavage of C-Hg bond of organic mercury was amplified using gene specific primers, cloned in pGEMT(®) easy vector and sequenced. Microbe-based approach using organomercurial lyase encoded by merB gene being potentially economic, provides foundation to facilitate genetic manipulation of this environmentally important enzyme to remove high concentrations of obstinate mercury using holistic, multifaceted approach for use in bioremediation through generation of transgenics or as catalyst for use in bioreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.