Abstract

BackgroundRhodosporidium toruloides is a β-carotenoid accumulating, oleaginous yeast that has great biotechnological potential. The lack of reliable and efficient genetic manipulation tools have been a major hurdle blocking its adoption as a biotechnology platform.ResultsWe report for the first time the development of a highly efficient targeted gene deletion method in R. toruloides ATCC 10657 via Agrobacterium tumefaciens-mediated transformation. To further improve targeting frequency, the KU70 and KU80 homologs in R. toruloides were isolated and characterized in detail. A KU70-deficient mutant (∆ku70e) generated with the hygromycin selection cassette removed by the Cre-loxP recombination system showed a dramatically improved targeted gene deletion frequency, with over 90% of the transformants being true knockouts when homology sequence length of at least 1 kb was used. Successful gene targeting could be made with homologous flanking sequences as short as 100 bp in the ∆ku70e strain. KU70 deficiency did not perturb cell growth although an elevated sensitivity to DNA mutagenic agents was observed. Compared to the other well-known oleaginous yeast, Yarrowia lipolytica, R. toruloides KU70/KU80 genes contain much higher density of introns and are the most GC-rich KU70/KU80 genes reported.ConclusionsThe KU70-deficient mutant generated herein was effective in improving gene deletion frequency and allowed shorter homology sequences to be used for gene targeting. It retained the key oleaginous and fast growing features of R. toruloides. The strain should facilitate both fundamental and applied studies in this important yeast, with the approaches taken here likely to be applicable in other species in subphylum Pucciniomycotina.

Highlights

  • Rhodosporidium toruloides is a β-carotenoid accumulating, oleaginous yeast that has great biotechnological potential

  • It has been proposed that DNA repair of doublestranded breaks by homologous recombination (HR) and non-homologous end-joining (NHEJ) operate competitively [10], and the predominance of NHEJ over HR has been regarded as the main cause of low gene targeting efficiency in fungi [11,12]

  • Isolation and characterization of Ku70 and Ku80 encoding genes in R. toruloides Putative genes encoding the Ku70 and Ku80 homologues in the Rhodotorula glutinis ATCC 204091 genome were identified by tBLASTn search against the R. glutinis ATCC 204091 genome database at NCBI using the Ustilago maydis Ku70 and Ku80 sequences as the query

Read more

Summary

Results

Isolation and characterization of Ku70 and Ku80 encoding genes in R. toruloides Putative genes encoding the Ku70 and Ku80 homologues in the Rhodotorula glutinis ATCC 204091 ( re-named as Rhodosporidium toruloides ATCC 204091) genome were identified by tBLASTn search against the R. glutinis ATCC 204091 genome database at NCBI using the Ustilago maydis Ku70 and Ku80 sequences as the query As we found that high percentage of 5fluoroorotic acid (5-FOA) resistant transformants were not true deletion mutants of URA3 previouly, we decided to evaluate the deletion of CAR2 homologue as a fast assay for gene deletion frequency because it encodes a bifunctional protein catalyzing phytoene synthase and carotene cyclase that is essential in the biosynthesis of β-carotene [25,26]. Using U. maydis Car2 [26] as a query for tBLASTn search against the R. toruloides ATCC 204091 genome database, a DNA fragment sharing high sequence homology to the query Increased gene deletion frequencies were observed at both STE20 and URA3 loci (Table 2), with the deletions verified by Southern blot and phenotypic analyses (Figure 5). There were no significant differences in sugar consumption rate and fatty acid profile between WT and Δku (Additional file 3)

Conclusions
Background
Discussion
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.