Abstract
The Squamata are the most adaptive and prosperous group among ectothermic amniotes, reptiles, due to their species-richness and geographically wide habitat. Although the molecular mechanisms underlying their prosperity remain largely unknown, unique features have been reported from hormones that regulate energy metabolism. Insulin, a central anabolic hormone, is one such hormone, as its roles and effectiveness in regulation of blood glucose levels remain to be examined in squamates. In the present study, cDNAs coding for insulin were isolated from multiple species that represent various groups of squamates. The deduced amino acid sequences showed a high degree of divergence, with four lineages showing obviously higher number of amino acid substitutions than most of vertebrates, from teleosts to mammals. Among 18 sites presented to comprise the two receptor binding surfaces (one with 12 sites and the other with 6 sites), substitutions were observed in 13 sites. Among them was the substitution of HisB10, which results in the loss of the ability to hexamerize. Furthermore, three of these substitutions were reported to increase mitogenicity in human analogues. These substitutions were also reported from insulin of hystricomorph rodents and agnathan fishes, whose mitogenic potency have been shown to be increased.The estimated value of the non-synonymous-to-synonymous substitution ratio (ω) for the Squamata clade was larger than those of the other reptiles and aves. Even higher values were estimated for several lineages among squamates. These results, together with the regulatory mechanisms of digestion and nutrient assimilation in squamates, suggested a possible adaptive process through the molecular evolution of squamate INS. Further studies on the roles of insulin, in relation to the physiological and ecological traits of squamate species, will provide an insight into the molecular mechanisms that have led to the adaptivity and prosperity of squamates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.