Abstract

The high mutation rate of infectious bronchitis virus (IBV) poses a significant threat to the protective efficacy of vaccines. This study aimed at analyzing the S1 genes of IBV field strains isolated in Southwestern China from 2018 to 2020, assessing the pathogenicity of four dominating strains, and evaluating the protective efficacy of four commercial vaccine strains against the endemic representative strains. Thirty-two field strains of IBV were isolated in Southwestern China from 2018 to 2020. Phylogenetic analysis of their S1 genes revealed the nucleotide homology ranged from 64.6% to 100%, and belonged to five genotypes [GI-19 (QX, 53.13%), GI-28 (LDT3-A,15.63%), GI-7 (TW, 12.50%), GI-1 (Mass, 6.23%), GVI-1 (TC07-2, 6.25%)], and two variant groups [variant-3 (3.13%) and variant-5 (3.13%)]. Recombination events between field and vaccine strains or between field strains were identified in the S1 genes of eight IBV field strains. The CK/CH/YNKM/191128 and CK/CH/CQBS/191203 strains of GI-19 showed morbidity rates of 66.7% and 73.7%, respectively, and mortality rates of 13.3% and 33.3%, respectively. Besides, the CK/CH/SCYC/191030 and CK/CH/GZGY/191021 strains of GI-28 caused morbidity rates of 60% and 86.7%, respectively, and mortality rates of 33.3%. The protective efficacy of the four commercial live vaccine strains (4/91, FNO-E55, LDT3-A, and QXL87) ranged from 70% − 100% and reduced tissue lesions against CK/CH/GZGY/191021 and CK/CH/CQBS/191203 strains. LDT3-A strain was the most effective one but still could not completely prohibit IBV shedding. These findings provide a reference for IBV molecular evolution analysis and control of IB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call