Abstract

BackgroundHere, we report on the partial and full-length genomic (FLG) variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs), 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 7 adult T-cell leukemia/lymphoma (ATLL) patients, using an Illumina paired-end protocol.MethodsBlood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis.ResultsA high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14) and FLG (n = 76) data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5%) individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA) and that 4 individuals (4.5%) were infected with the Japanese sub-subtypes (aB). A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil.ConclusionsThis study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data will add to our current understanding of the evolutionary history of this medically important virus.

Highlights

  • Human T-cell leukemia virus type I (HTLV-1) is the retrovirus responsible for adult T-cell leukemia/lymphoma (ATLL) and for the chronic neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [1,2,3,4]

  • Among the 15 to 25 million HTLV-1infected individuals living throughout the world, approximately 1 to 5% will develop ATL or HAM/TSP, depending on as-yetunknown cofactors that could vary according to geographical location [12]

  • HTLV-1 carries a diploid RNA genome comprising 9032 nucleotides that is reverse-transcribed into double-stranded DNA that integrates into the host genome as a provirus [13]

Read more

Summary

Introduction

Human T-cell leukemia virus type I (HTLV-1) is the retrovirus responsible for adult T-cell leukemia/lymphoma (ATLL) and for the chronic neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [1,2,3,4]. HTLV-1 carries a diploid RNA genome comprising 9032 nucleotides that is reverse-transcribed into double-stranded DNA that integrates into the host genome as a provirus [13]. This genome contains gag, pol and env genes flanked by long terminal repeat (LTR) sequences at both the 59 and 39 ends. We report on the partial and full-length genomic (FLG) variability of HTLV-1 sequences from 90 wellcharacterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs), 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 7 adult T-cell leukemia/lymphoma (ATLL) patients, using an Illumina paired-end protocol

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call