Abstract

To isolate and characterize indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples and further evaluation of their probiotic potentiality. Indigenous gluten hydrolysing isolates GS 33, GS 143, GS 181 and GS 188 were identified as Bacillus sp. by molecular-typing methods and studied extensively for their functional and probiotic attributes. All the tested isolates could survive at pH 2 and toxicity of 0·3% bile and also exhibited cell surface hydrophobicity and autoaggregation phenotype. The isolates were adhered strongly to Caco-2 cells and coaggregated with Escherichia coli MTCC 433 and Listeria monocytogenes MTCC 1143 preventing pathogen invasion into Caco-2 cells invitro. In addition, the minimum inhibitory concentration of selected antibiotics for all the investigated gluten hydrolysing isolates was within the breakpoint values as recommended by the European Food Safety Authority. The indigenous high intensity gluten hydrolysing bacteria exhibited high resistance to gastric and pancreatic stress and possessed antibacterial, aggregation, adhesion and pathogen exclusion properties, and as a potential probiotics, either alone or in consortium would be useful in the development of gluten-free wheat foods. Exploring new indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples would be beneficial in developing gluten-free wheat foods using potential indigenous probiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.