Abstract
Actin depolymerizing factor (ADF), highly conserved in all eukaryotic cells, is a low molecular mass of actin-binding protein, which plays a key role in modulating the polymerizing and depolymerizing of the actin filaments. Four cDNAs (designated GhADF2, GhADF3, GhADF4, and GhADF5, respectively) encoding ADF proteins were isolated from cotton ( Gossypium hirsutum) fiber cDNA library. GhADF2 cDNA is 705 bp in length and deduces a protein with 139 amino acids. GhADF3 cDNA is 819 bp in length and encodes a protein of 139 amino acids. GhADF4 cDNA is 804 bp in length and deduces a protein with 143 amino acids. GhADF5 cDNA is 644 bp in length and encodes a protein of 141 amino acids. The molecular evolutionary relationship of these genes was analyzed by means of bioinformatics. GhADF2 is closely related to GhADF3 (99% identity) and PetADF2 (89% identity). GhADF4 is closely related to AtADF6 (78% identity), and GhADF5 is closely related to AtADF5 (83% identity). These results demonstrated that the plant ADF genes are highly conserved in structure. RT-PCR analysis showed that GhADF2 is predominantly expressed in fiber, whereas, GhADF5 is mainly expressed in cotyledons. On the other hand, it seems that GhADF3 and GhADF4 have no tissue specificity. Expression levels of different ADF genes may vary considerably in the same cell type, suggesting that they might be involved in regulating tissue development of cotton and the each ADF isoform may diverge to form the functional difference from the other ADFs during evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.