Abstract

<p>Firework (FW) emissions have strong impacts on air quality and public health. However, little is known about the molecular composition of FW-related aerosols especially the organic fraction. Here we describe the detailed molecular composition of Beijing aerosols collected before, during, and after a FW event in New Year's Eve evening. Subgroups of CHO, CHNO, CHOS, and CHNOS were characterized using ultrahigh resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. We found that high molecular weight compounds with relatively low H/C and O/C ratios and high degree of unsaturation were greatly enhanced during the New Year’s Eve, which are likely to be aromatic-like compounds. They plausibly contributed to the formation of brown carbon and affect the light absorption properties of atmospheric aerosols. Moreover, the number concentration of sulfur-containing compounds especially the nitrooxy-organosulfate was increased dramatically by the FW event, suggesting the important effect of nighttime chemistry on their formation. But, the number concentration of CHO and CHON doubled after the event with photooxidation. The co-variation of these subgroups was suggested to be associated with multiple atmospheric aging processes of aerosols including the multiphase redox chemistry driven by NO<sub>x</sub>, O<sub>3</sub>, and <sup>·</sup>OH. Our study provides new insights into the anthropogenic emissions for urban SOA formation.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.