Abstract

This study was conducted to identify the distribution of virulence determinants in uropathogenic Escherichia coli (UPEC) isolates obtained from kidney transplant (KTP) and non-transplant patients (non-KTP) with urinary tract infections (UTI). Additionally, the (GTG)5 fingerprinting technique was used to investigate the genetic diversity of Extended-Spectrum B-Lactamase (ESBL)-positive isolates.In this case-control study, 111 urine isolates were obtained from non-KTPs and KTPs, respectively. The presence of genetic markers encoding adhesion proteins, toxins and major E. coli phylogroups was assessed through PCR amplification. Molecular typing of ESBL-positive UPEC strains was performed using (GTG)5 fingerprinting and Multilocus sequence typing (MLST) techniques.Overall, 65 and 46 UPEC isolates were obtained from non-KTPs and KTPs, respectively. Among the studied isolates, traT (85.6%) gene was the most frequently observed virulence gene, followed by kpsMT (49.5%). Using the 80% cut-off point, all the 35 UPEC isolates were classified into four major clusters, namely A, B, C, and D. The majority of the Sequence Type (ST) 131 isolates belonged to cluster A. Additionally, three ST1193 isolates belonged to cluster A and phylogroup B2. Moreover, ST38, ST131 and ST10 were in different cluster.In general, we observed significant differences in the papA, ompT, sat, and vat genes between KTPs and non-KTPs. Furthermore, since all the isolates carried one or more virulence factors (VFs), these findings are concerning in the context of managing UTIs caused by the UPEC strain. Additionally, the distribution of ST and Clonal Complex (CC) among isolates in the main clusters revealed significant differences between MLST and (GTG)5 fingerprinting analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call