Abstract
Enhanced Biological Phosphorus Removal (EBPR) under anoxic conditions was achieved using a Biological Nutrient Removal (BNR) system based on a modification of the DEPHANOX configuration. Double-probe Fluorescence in Situ Hybridization (FISH) revealed that Polyphosphate Accumulating Organisms (PAOs) comprised 12.3 +/- 3.2% of the total bacterial population in the modified DEPHANOX plant. The growing bacterial population on blood agar and Casitone Glycerol Yeast Autolysate agar (CGYA) medium was 16.7 +/- 0.9 x 10(5) and 3.0 +/- 0.6 x 10(5) colony forming units (cfu) mL(-1) activated sludge, respectively. A total of 121 bacterial isolates were characterized according to their denitrification ability, with 26 bacterial strains being capable of reducing nitrate to gas. All denitrifying isolates were placed within the alpha-, beta-, and gamma-subdivisions of Proteobacteria and the family Flavobacteriaceae. Furthermore, a novel denitrifying bacterium within the genus Pseudomonas was identified. This is the first report on the isolation and molecular characterization of denitrifying bacteria from EBPR sludge using a DEPHANOX-type plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.