Abstract

Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect brain and are target sites for neonicotinoid insecticides. Seven nAChR subunits (four alpha-type and three beta-type) have been cloned previously from Drosophila melanogaster, the model insect system and characterized by heterologous expression. Recently, three further putative nAChR alpha subunits (Dalpha5, Dalpha6 and Dalpha7) with sequence similarity to the vertebrate alpha7 subunit have been identified from Drosophila genome sequence data but there have been no reports, as yet, of their characterization by heterologous expression. In the present study, we report the first isolation of a full-length Dalpha7 cDNA and the independent molecular cloning of Dalpha6. Binding of nicotinic radioligands was not detected to full-length Dalpha6 or Dalpha7 subunits when expressed alone or when or co-expressed with other nAChR subunits in Drosophila or mammalian cell lines, but specific cell-surface binding of [(125)I]alpha-bungarotoxin (K(d) = 0.68 +/- 0.22 nm) and [(3)H]methyllycaconitine (K(d) = 0.27 +/- 0.06 nm) was detected after expression of a subunit chimera containing the ligand-binding domains of Dalpha6 fused to the C-terminal domain of the 5-hydroxytryptamine receptor 5HT(3A). Although cell-surface binding was not detected with a Dalpha7/5HT(3Alpha) chimera expressed alone, co-expression of the two subunit chimeras resulted in significantly enhanced levels of nicotinic radioligand binding (with no change in affinity). This is the first evidence for the formation of a nAChR binding site by heterologously expressed Drosophila nAChR subunits in the absence of a co-expressed vertebrate nAChR subunit. In addition to the formation of homomeric nAChR complexes, evidence has been obtained from both radioligand binding and co-immunoprecipitation studies for the co-assembly of Dalpha6 and Dalpha7 into heteromeric cell surface complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call