Abstract

Simple SummaryCryptosporidium is a widespread pathogen that infects a broad range of vertebrates, including humans, in which it is one of the main causes of diarrhea worldwide. Marine fishes also harbor Cryptosporidium species, including zoonotic ones. The goal of this study is to evaluate the presence of Cryptosporidium species in edible marine fishes using molecular tools. The area of study, located in the Western Mediterranean, is an important area for marine fish production and capture. The following three groups were studied: cultivated fish, wild fish that aggregate in the surroundings of marine fish farms and wild fish from extractive fisheries. Results show that the most affected group is the group of wild fish from the vicinity of fish farms. Two species were mainly identified, C. molnari (fish specific) and zoonotic C. ubiquitum. The presence of zoonotic C. ubiquitum in two European sea bass (Dicentrarchus labrax) highlights a potential risk for fish consumers.Fish not only harbor host-specific species/genotypes of Cryptosporidium, but also species like zoonotic C. parvum or anthroponotic C. hominis, which can pose a risk for fish consumers. This study aims to investigate fish cryptosporidiosis in an important aquaculture and fishery area of the Western Mediterranean (Comunidad Valenciana, Spain). We analyzed 404 specimens belonging to the following three groups: cultivated fish (N = 147), wild synanthropic fish (N = 147) and wild fish from extractive fisheries (N = 110). Nested PCR targeting the 18S rRNA gene, followed by sequencing and phylogenetic analysis, were performed. Positive isolates were also amplified at the actin gene locus. An overall prevalence of 4.2% was detected, with the highest prevalence in the synanthropic group (6.1%). C. molnari was identified in thirteen specimens from seven different host species. Zoonotic C. ubiquitum was detected in two European sea bass (Dicentrarchus labrax). One isolate similar to C. scophthalmi was detected in a cultivated meagre (Argyrosomus regius), and one isolate, highly divergent from all the Cryptosporidium species/genotypes described, was identified from a synanthropic round sardinella (Sardinella aurita). This study contributes to increasing the molecular data on fish cryptosporidiosis, expanding the range of known hosts for C. molnari and identifying, for the first time, zoonotic C. ubiquitum in edible marine fishes, pointing out a potential health risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call