Abstract

The molecular type of environmental Cryptococcus neoformans in Beijing was not clear. Our study aims to reveal the molecular characterization of C. neoformans complex from environment in Beijing, China. A total of 435 samples of pigeon droppings from 11 different homes in Beijing were collected from August to November in 2015. Pigeon droppings were inoculated onto caffeic acid cornmeal agar (CACA) to screen C. neoformans complex. Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed for species identification. Serotype and mating type was determined by specific primers. Restriction fragment length polymorphisms of URA5 (URA5-RFLP) were applied to genotype. Multi-locus sequence typing (MLST) was done for further identification and sequence type (ST) determination. Altogether, 81 isolates of C. neoformans AFLP1/VNI were recognized from 435 pigeon droppings in this study. The positive rate for C. neoformans AFLP1/VNI from pigeon droppings in different homes varied from 5.0% to 52.6%, the average was 20.2%. All of these cryptococcal strains were serotype A, MATα. They were genotyped as VNI by URA5-RFLP and were confirmed by MLST. No other molecular types of C. neoformans and Cryptococcus gattii isolates were isolated. Their STs were identified as ST 31 (n = 54, 66.7%), followed by ST 53 (n = 10), ST 191 (n = 8), ST 5 (n = 5), ST 57 (n = 3), and ST 38 (n = 1). We concluded that not only clinical but also environmental isolates of C. neoformans need to be investigated more deeply and more extensively. The virulence difference between ST 5 and ST 31 need to be explored in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.