Abstract

The classical model of adaptive evolution in an asexual population postulates that each adaptive clone is derived from the one preceding it1. However, experimental evidence suggests more complex dynamics2-5 with theory predicting the fixation probability of a beneficial mutation as dependent on the mutation rate, population size, and the mutation's selection coefficient6. Clonal interference has been demonstrated in viruses7 and bacteria8, but has not been demonstrated in a eukaryote and a detailed molecular characterization is lacking. Here we use different fluorescent markers to visualize the dynamics of asexually evolving yeast populations. For each adaptive clone within one of our evolving populations, we have identified the underlying mutations, monitored their population frequencies and used microarrays to characterize changes in the transcriptome. These data provide the most detailed molecular characterization of an experimental evolution to date, and provide direct experimental evidence supporting both the clonal interference and the multiple mutation models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.