Abstract

A partial syndecan-2 sequence (147 bp) was obtained from chicken embryonic fibroblast poly(A)+ RNA by reverse transcription-PCR. This partial sequence was used to produce a 5'-end-labelled probe. A chicken liver cDNA library was screened with this probe, and overlapping clones were obtained encompassing the entire cDNA of 3 kb. The open reading frame encodes a protein of 201 amino acids. The cytoplasmic domain is identical with that of mammalian syndecan-2, and highly similar to those of Xenopus laevis and zebrafish syndecan-2. The transmembrane domain is identical with that of mammalian and zebrafish syndecan-2, and highly similar to that of Xenopus laevis syndecan-2. The ectodomain is 45-62% identical with that of zebrafish, Xenopus laevis and mammalian syndecan-2. Two coding single nucleotide polymorphisms were observed. In vitro transcription and translation yielded a product of 30 kDa. Western blotting of chicken embryonic fibroblast cell lysates with species-specific monoclonal antibody mAb 8.1 showed that chicken syndecan-2 is substituted with heparan sulphate, and that the major form of chicken syndecan-2 isolated from chicken fibroblasts is consistent with the formation of SDS-resistant dimers, which is common for syndecans. A 5'-end-labelled probe hybridized to two mRNA species in chicken embryonic fibroblasts, while Northern analysis with poly(A)+ RNAs from different tissues of chicken embryos showed wide and distinct distributions of chicken syndecan-2 during embryonic development. This pattern was different from that reported for syndecan-4, but consistent with the roles of syndecan-2 in neural maturation and in mesenchymal-matrix interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.