Abstract

Two cDNAs for anionic peroxidase (PODs), swpa2 and swpa3, were isolated from suspension cultures of sweet potato (Ipomoea batatas), and their expression was investigated with a view to understanding the physiological function of PODs in relation to environmental stresses. Swpa2 (whose putative mature protein product would have a pI value of 4.1) and swpa3 (4.3) encode polypeptides of 358 and 349 amino acids, respectively. The genes from which they were derived are predominantly expressed in cultured cells of sweet potato; transcripts of swpa2 were not detected in any tissues of the intact plant, and transcripts of swpa3 were detected at a low level only in the stem tissue. During cell culture, the expression patterns of the two genes differed; the level of swpa2 RNA progressively increased during cell growth, whereas that of swpa3 reached a maximum at the stationary phase and decreased on further culture. The two genes responded differently to stresses such as wounding or chilling of leaves. Swpa2 was strongly induced 48 h after wounding, but swpa3 was not affected by this treatment. The two genes were also highly expressed upon chilling (4 degrees C), but expression was reduced by prior acclimation at 15 degrees C. In addition, both genes were strongly induced immediately after treatment with ozone, and expression had decreased to the basal level 12 h after treatment. The response of these two genes to stresses such as aging, wounding, and chilling are different from those of the POD genes (swpa1 encoding an anionic product and swpn1 a neutral peroxidase) that we described previously. The responses of the two genes were also different from each other. These results suggest that the two new POD genes are involved in overcoming oxidative environmental stress, and each POD gene may be regulated by cell growth and environmental stress in different ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.