Abstract

Organosulfates (OSs) are an important component of atmospheric organic aerosol (OA) and are widespread in various environments. However, the OSs generated from anthropogenic emissions are poorly understood. In this study, the molecular compositions of OSs from atmospheric PM2.5 samples collected during a winter measurement campaign (SEISO-Bohai) at Jingtang Harbor were characterized via ultrahigh resolution mass spectrometry (UHRMS). The changes of port OS compositions were observed in episodes of complete haze pollution. As the pollution aggravated, the relative abundances of OSs were apparently increased, and the molecule compositions became more complex, primarily driven by the oxidation and fragmentation processes. Potential OS precursors from traffic emissions were identified based on an optimized “OS precursor map” developed in the previous study. OSs characterized by high molecular weights and low degrees of both unsaturation and oxidization were suggested to mainly derive from secondary reactions of intermediate volatile organic compounds (IVOCs) emitted by traffic sources. These OSs were primarily detected in clean-day samples, followed by decreasing with the pollution process. In addition, our study also finds that ship emissions may further facilitated OS productions under haze pollution conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.