Abstract

Achyranthes bidentata contains a rich source of important pharmaceutically active triterpene acids including oleanolic acid (OA) as a major one. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme to provide mevalonate for biosynthesis of triterpene acids. In this study, in order to develop a sustainable source of OA, cell suspension cultures were established from shoot cultures of A. bidentata, and a full length cDNA encoding HMGR (designated as AbHMGR) was cloned and characterized. The cDNA contained 2078 nucleotides with a complete open reading frame of 1593 nucleotides, which was predicted to encode a peptide of 530 amino acids. Expression analysis by real-time PCR revealed that AbHMGR mRNA was abundant in A. bidentata roots, stems and leaves. When cultivated in Murashige and Skoog medium supplemented with 1.5 mg/L 1-naphthlcetic acid (NAA) and 1.5 mg/L 6-benzyladenine (6-BA), cells in suspension culture grew rapidly, yielding OA (100.9 mg/L) after 15 days. OA content in cell cultures was increased under the elicitation of methyl jasmonate (MeJA), yeast elicitor (YE) or cadmium chloride (CdCl2). The ultrahigh production of OA was achieved to 371.8 mg/L, a 5.4-fold of the control after 2-day treatment of 0.2 mM MeJA in the cell cultures. Quantitative real-time PCR analysis showed that AbHMGR was expressed at a higher level under the elicitation of MeJA or YE. Our results suggested that OA production may be the result of the up-regulated expression of AbHMGR under the treatment of various elicitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call