Abstract

BackgroundThe blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized. However, the final step involving the accumulation of anthocyanins in petal vacuoles remains unclear. We cloned and analyzed the glutathione S-transferases (GSTs) in Japanese gentian that are known to be involved in anthocyanin transport in other plant species.ResultsWe cloned GST1, which is expressed in gentian flower petals. Additionally, this gene belongs to the Phi-type GST clade related to anthocyanin biosynthesis. We used the CRISPR/Cas9-mediated genome editing system to generate loss-of-function GST1 alleles. The edited alleles were confirmed by Sanger and next-generation sequencing analyses. The GST1 genome-edited lines exhibited two types of mutant flower phenotypes, severe (almost white) and mild (pale blue). The phenotypes were associated with decreased anthocyanin accumulation in flower petals. In the GST1 genome-edited lines, sugar-induced stress conditions inhibited the accumulation of anthocyanins in stems and leaves, suggestvhing that GST1 is necessary for stress-related anthocyanin accumulation in organs other than flowers. These observations clearly demonstrate that GST1 is the gene responsible for anthocyanin transport in Japanese gentian, and is necessary for the accumulation of gentiodelphin in flowers.ConclusionsIn this study, an anthocyanin-related GST gene in Japanese gentian was functionally characterized. Unlike other biosynthesis genes, the functions of GST genes are difficult to examine in in vitro studies. Thus, the genome-editing strategy described herein may be useful for in vivo investigations of the roles of transport-related genes in gentian plants.

Highlights

  • The blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized

  • The coding region sequences of the deduced glutathione S-transferase (GST) were 642 bp long, with three single nucleotide polymorphisms (SNPs) between the two alleles, which both encode proteins consisting of 214 amino acid residues, with one amino acid difference at position 114 (GST1–1, phenylalanine; GST1–2, leucine)

  • Its contribution to flower pigmentation was confirmed with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing system

Read more

Summary

Introduction

The blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized. To clarify the molecular mechanism mediating the development of blue gentian flowers, the genes involved in the associated metabolic pathway have been isolated and characterized. These include biosynthesis genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), dihydroflavonol 4reductase (DFR), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3’H), flavonoid 3′,5′-hydroxylase (F3’5’H), flavone synthase II (FNSII), and anthocyanidin synthase (ANS), as well as modification genes, such as those encoding anthocyanin 5-glucosyltransferase (5GT), 3′-glucosyltransferase (3′GT), and 5,3′-aromatic acyltransferase (5/ 3’AT), and regulatory genes encoding MYB and bHLH transcription factors. To the best of our knowledge, the gentian genes related to anthocyanin transport have not been characterized

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call