Abstract

Modification of lignin composition and content are important to enhance the saccharification potential of lignocellulosic biomass. Brown midrib (bmr) mutants with altered lignin and enhanced glucose yields are a valuable resource for modification of the lignin biosynthetic pathway in sorghum (Sorghum bicolor (L.) Moench). Of the 38 bmr mutants reported in sorghum, some have been classified into four independent groups, namely bmr2, bmr6, bmr12 and bmr19, based on the allelic test, and a few have been characterized at the molecular level. The bmr2, bmr6 and bmr12 groups have mutations that impair 4-coumarate:coenzyme A ligase (4CL), cinnamyl alcohol dehydrogenase (CAD2) and caffeic O-methyltransferase (COMT), respectively. The molecular basis of bmr19 is unknown. In the present study, four spontaneous bmr mutants of sorghum were analyzed for allelic variation at two candidate gene loci. cDNAs of CAD2 and COMT genes were cloned and sequenced from these mutants. Sequence analysis revealed that two of these mutants, IS23789 and IS23253, share a new allele of CAD2. These mutants have a G-to-C transversion at position 3699 of the genomic sequence that leads to glycine-to-arginine (G191R) substitution in the CAD2 protein sequence. This mutation lies in the highly conserved glycine-rich motif 188G(X)GGV(L)G193 that participates in the binding of the pyrophosphate group of NADP+ cofactor and hence might impair the activity of CAD2. Phloroglucinol staining of midribs of these mutants also showed a dark wine-red color that is characteristic of the bmr6 group. These two mutants can be distinguished by an intron length polymorphic marker developed based on the COMT gene sequence in this study. Mutant IS23549, which has also been assigned to the bmr6 group, was found to have another new allele with alanine-to-valine (A164V) substitution in CAD2. Alanine-164 is highly conserved among MDR proteins in plants and hence may be necessary for the activity of the enzyme. In mutant IS11861, there was no mutation that led to a change in amino acid in CAD2, while a threonine-to-serine (T302S) substitution was found in COMT. This single nucleotide polymorphism (SNP) at position 2645 in the COMT gene was converted into a cleaved amplified polymorphic sequence marker that can be used for its identification. In addition, additional SNP- and/or indel-based markers were developed, which can be used for exploiting these alleles in the molecular breeding of sorghum for dedicated bioenergy feedstock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call