Abstract

Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties, and its peptidoglycans have the potential for applications in the fields of food science and medicine. We investigated the bifidobacterial alanine racemase, which is essential in the synthesis of d-alanine as an essential component of the peptidoglycans. Alanine racemase was purified to homogeneity from a crude extract of B. bifidum NBRC 14252. It consisted of two identical subunits with a molecular mass of 50 kDa. The enzyme required pyridoxal 5′-phosphate (PLP) as a coenzyme. The activity was lost in the presence of a thiol-modifying agent. The enzyme almost exclusively catalyzed the alanine racemization; other amino acids tested, except for serine, were inactive as substrates. The kinetic parameters of the enzyme suggested that the B. bifidum alanine racemase possesses comparatively low affinities for both the coenzyme (9.1 μM for PLP) and substrates (44.3 mM for l-alanine; 74.3 mM for d-alanine). The alr gene encoding the alanine racemase was cloned and sequenced. The alr gene complemented the d-alanine auxotrophy of Escherichia coli MB2795, and an abundant amount of the enzyme was produced in cells of the E. coli MB2795 clone. The enzymologic and kinetic properties of the purified recombinant enzyme were almost the same as those of the alanine racemase from B. bifidum NBRC 14252.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call