Abstract

BackgroundInter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked.ResultsWe report here the identification of a rice mutator-phenotype from a set of rice plants derived from a crossing experiment involving two remote and apparently incompatible species, Oryza sativa L. and Oenothera biennis L. The mutator-phenotype (named Tong211-LP) showed distinct alteration in several traits, with the most striking being substantially enlarged panicles. Expectably, gel-blotting by total genomic DNA of the pollen-donor showed no evidence for introgression. Characterization of Tong211-LP (S0) and its selfed progenies (S1) ruled out contamination (via seed or pollen) or polyploidy as a cause for its dramatic phenotypic changes, but revealed transgenerational mobilization of several previously characterized transposable elements (TEs), including a MITE (mPing), and three LTR retrotransposons (Osr7, Osr23 and Tos17). AFLP and MSAP fingerprinting revealed extensive, transgenerational alterations in cytosine methylation and to a less extent also genetic variation in Tong211-LP and its immediate progenies. mPing mobility was found to correlate with cytosine methylation alteration detected by MSAP but not with genetic variation detected by AFLP. Assay by q-RT-PCR of the steady-state transcript abundance of a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, and small interference RNA (siRNA) pathway-related proteins showed that, relative to the rice parental line, heritable perturbation in expression of 12 out of the 13 genes occurred in the mutator-phenotype and its sefled progenies.ConclusionTransgenerational epigenetic instability in the form of altered cytosine methylation and its associated TE activity occurred in a rice mutator-phenotype produced by pollinating the rice stigma with pollens of O. biennis. Heritably perturbed homeostatic expression-state of genes involved in maintenance of chromatin structure is likely an underlying cause for the alien pollination-induced transgenerational epigenetic/genetic instability, and which occurred apparently without entailing genome merger or genetic introgression.

Highlights

  • Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants

  • It remained a formal possibility that at least some of the detected non-Mendelian genetic and epigenetic mutations in these cases may not have been induced by the integration of DNA or chromatin segments per se; instead, they might have been the consequence of the process of genetic transfer or alien pollination, which conceivably may constitute a kind of "biological stress" and elicit genetic and epigenetic instabilities, a scenario consistent with McClintock's "genomic shock" hypothesis [18]

  • Tong211) panicles that were artificially pollinated by fresh pollens taken from a single accession of a dicot plant, evening primrose (Oenothera biennis L.), followed by a second round pollination 48 hrs later with their own pollens collected from other individuals of Tong211 – a pollination method we termed "repeated pollination" [27]

Read more

Summary

Introduction

Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It was found that random integration of uncharacterized DNA segments from unrelated sources into cultured animal cells, and introgression of multiple, tiny chromatin segments from a distantly related donor species into a recipient plant species may be mutagenic and induce genetic and epigenetic variations [19,20,21,22,23]. In these instances, the introgression of alien DNA or chromatin segments were automatically assumed as the causal factor for the induced instabilities, no direct link between the two events was ever established. It remained a formal possibility that at least some of the detected non-Mendelian genetic and epigenetic mutations in these cases may not have been induced by the integration of DNA or chromatin segments per se; instead, they might have been the consequence of the process of genetic transfer (in animals) or alien pollination (in plants), which conceivably may constitute a kind of "biological stress" and elicit genetic and epigenetic instabilities, a scenario consistent with McClintock's "genomic shock" hypothesis [18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call