Abstract

In the terminal part of the kidney collecting duct, rapid urea reabsorption is essential to maintaining medullary hypertonicity, allowing maximal urinary concentration to occur. This process is mediated by facilitated urea transporters on both apical and basolateral membranes. Our previous studies have identified three rat urea transporters involved in the urinary concentrating mechanism, UT1, UT2 and UT3, herein renamed UrT1-A, UrT1-B, and UrT2, which exhibit distinct spatial distribution in the kidney. Here we report the molecular characterization of an additional urea transporter isoform, UrT1-C, from rat kidney that encodes a 460-amino acid residue protein. UrT1-C has 70 and 62% amino acid identity to rat UrT1-B and UrT2 (UT3), respectively, and 99% identity to a recently reported rat isoform (UT-A3; Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, and Bagnasco SM. J Am Soc Nephrol 10: 230-237, 1999). We report the anatomic distribution of UrT1-C in the rat kidney tubule system as well as a detailed functional characterization. UrT1-C m RNA is primarily expressed in the deep part of the inner medulla. When expressed in Xenopus laevis oocytes, UrT1-C induced a 15-fold stimulation of urea uptake, which was inhibited almost completely by phloretin (0.7 mM) and 60-95% by thiourea analogs (150 mM). The characteristics are consistent with those described in perfusion studies with inner medullary collecting duct (IMCD) segments, but, contrary to UrT1-A, UrT1-C-mediated urea uptake was not stimulated by activation of protein kinase A. Our data show that UrT1-C is a phloretin-inhibitable urea transporter expressed in the terminal collecting duct that likely serves as an exit mechanism for urea at the basolateral membrane of IMCD cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.