Abstract

Understanding the molecular structure of high-molecular-weight glutenin subunit (HMW-GS) may provide useful evidence for the study on the improvement of quality of cultivated wheat and the evolution of Glu-1 alleles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that the subunits encoded by Glu-B1 were null, named 1Bxm, in a Triticum turgidum var. dicoccoides line PI94640. Primers based on the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of line PI94640. The PCR products were sequenced, and the total nucleotide sequence of 3 442 bp including upstream sequence of 1 070 bp was obtained. Compared with the reported gene sequences of Glu-1Bx alleles, the promoter region of the Glu-1Bxm showed close resemblance to 1Bx7. The Glu-1Bxm coding region differs from the other Glu-1Bx alleles for a deduced mature protein with only 212 residues, and a stop codon (TAA) at 637 bp downstream from the start codon was present, which was probably responsible for the silencing of x-type subunit genes at the Glu-B1 locus. Phylogenetic tree based on the nucleotide sequence alignment of HMW glutenin subunit genes showed that 1Bxm was the most ancient type of Glu-B1 alleles, suggesting that the evolution rates are different among Glu-1Bx genes. Further study on the contribution of the unique silenced Glu-B1 alleles to quality improvement was also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call