Abstract

BackgroundSmall supernumerary marker chromosomes (sSMC) are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0,044% in newborns that increases up to almost 7 times in developmentally retarded patients. sSMC from all 24 chromosome have been described, most of them originate from the group of the acrocentric, with around half deriving from the chromosome 15. Non-acrocentric sSMC are less common and, in the 30 percent of the cases, are associated with phenotypic effect. Complex sSMC consist of chromosomal material derived from more than one chromosome. Genotype–phenotype correlations in patients with sSMC are difficult to assess. Clinical features depend on factors such as its size, genetic content, the involvement of imprinted genes which may be influenced by uniparental disomy and the level of mosaicism. Trisomy of the short arm of chromosome 18 (18p) is an infrequent finding and does not appear to be associated with a specific syndrome. However, mild intellectual disability with or without other anomalies is reported in almost one-third of the patients.Case presentationHere we present clinical and molecular characterization of a new case of de novo complex sSMC consisting of the entire short arm of chromosome 18p associated with a centromere of either chromosome 13 or 21, evidenced in a 5-year-old boy during diagnostic workup for moderate intellectual disability and dysmorphisms. To date, only seven cases of isolated trisomy 18p due to a sSMC have been reported, three of which have been characterized by array CGH. In two of them the breakpoints and the size of the duplication have been described. In the manuscript we also reviewed cases reported in the DECIPHER database carrying similar duplication and also considered smaller duplications within the region of interest, in order to evaluate the presence of critical regions implicated in the pathological phenotype.ConclusionsOur case provides additional information about phenotypic effects of pure trisomy 18p, confirms chromosomal microarray analysis as gold standard to characterize complex sSMC, and supplies additional elements for genetic counselling.

Highlights

  • Small supernumerary marker chromosomes are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0,044% in newborns that increases up to almost 7 times in developmentally retarded patients. sSMC from all 24 chromosome have been described, most of them originate from the group of the acrocentric, with around half deriving from the chromosome 15

  • Marchina et al Mol Cytogenet (2021) 14:6 retarded patients [1]. sSMC derived from all 24 chromosome have been described, the majority of them derive from the group of the acrocentric, with around half originating from chromosome 15 [2, 3]

  • Genotype–phenotype correlation for sSMCs is a challenging because clinical features depend on their size, the genetic content, the involvement of imprinted genes which may be influenced by uniparental disomy (UPD) and the level of mosaicism [6]

Read more

Summary

Introduction

Small supernumerary marker chromosomes (sSMC) are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0,044% in newborns that increases up to almost 7 times in developmentally retarded patients. sSMC from all 24 chromosome have been described, most of them originate from the group of the acrocentric, with around half deriving from the chromosome 15. Small supernumerary marker chromosomes (sSMC) are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0,044% in newborns that increases up to almost 7 times in developmentally retarded patients. SSMC from all 24 chromosome have been described, most of them originate from the group of the acrocentric, with around half deriving from the chromosome 15. Small supernumerary marker chromosomes (sSMC) are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0.044% in newborns that increases up to almost 7 times in developmentally. Genotype–phenotype correlation for sSMCs is a challenging because clinical features depend on their size, the genetic content, the involvement of imprinted genes which may be influenced by uniparental disomy (UPD) and the level of mosaicism [6]. Mild intellectual disability with or without other anomalies is reported in almost one-third of the patients [7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.