Abstract
In the present study, 407 anisakid nematodes, collected from 11 different species of cetaceans of the families Delphinidae, Kogiidae, Physeteridae, and Ziphiidae, from the southeastern Atlantic coasts of USA, the Gulf of Mexico, and the Caribbean Sea, were examined morphologically and genetically characterized by PCR restriction fragment length polymorphism to identify them to species level, assess their relative frequencies in definitive hosts, and determine any host preference. Sequence data from nuclear ribosomal internal transcribed spacer and mitochondrial cox2 genes were analysed by maximum parsimony and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. The results revealed a highly diverse ascaridoid community. Seven Anisakis species and Pseudoterranova species were recovered as adult parasites. Larval forms of Contracaecum multipapillatum were also found in a coastal population of bottlenose dolphins. The phylogenetic trees obtained from the combined dataset (and most individual datasets) revealed the existence of distinct clades, the first including species of the Anisakis simplex complex (A. simplex s.s., Anisakis pegreffii, A. simplex C), (Anisakis nascettii, Anisakis ziphidarum) and the second including Pseudoterranova ceticola ((Anisakis paggiae, (Anisakis physeteris, Anisakis brevispiculata)). This finding, excluding the relationship of P. ceticola, is consistent with the morphology of adult and larval specimens. Considering the presence versus absence of an intestinal cecum, the relationship of P. ceticola with the members of the second clade of Anisakis appears inconsistent with morphological evidences but consistent with host preference. The position of Anisakis typica as the sister group to the two main anisakid clades indicates that it represents a third distinct lineage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.