Abstract

Antimicrobial peptides (AMPs) are host defense peptides that are well conserved throughout the course of evolution. Histones are classical DNA-binding proteins, rich in cationic amino acids, and recently appreciated as precursors for various histone-derived AMPs. The present study deals with identification of the potential antimicrobial peptide sequence of teleostin from the histone H2A of marine teleost fishes, Cynoglossus semifasciatus and Tachysurus jella. A 245 bp amplicon coding for 81 amino acids was obtained from the cDNA transcripts of these fishes. The first 52 amino acids from the N terminal of the peptide were identical to previously characterized histone-derived antimicrobial peptides. Molecular and physicochemical characterizations of the sequence were found to be in agreement with previously reported histone H2A-derived AMPs, suggesting the possible role of histone H2A in innate defense mechanism in fishes.

Highlights

  • Antimicrobial peptides (AMPs) have made their mark as an emerging class of natural antibiotics [1]

  • In the present study we report molecular characterization and phylogenetic analysis of a histone H2A-derived AMP, teleostin from Catfish Tachysurus jella, and Bengal Tongue Sole Cynoglossus semifasciatus

  • A 245 bp amplicon coding for 81 amino acids (Figure 1) was amplified from the blood cells of Bengal tongue Sole C. semifasciatus and Catfish T. jella

Read more

Summary

Introduction

Antimicrobial peptides (AMPs) have made their mark as an emerging class of natural antibiotics [1] They represent molecules that have been retained by organisms throughout the course of their evolution as a part of defense mechanism against microbial enemies. The net positive charge enables these peptides to selectively attack negatively charged bacterial cell membranes and bring about destruction of the organism by pore formation or destabilization of membrane equilibrium or by penetration into the cell and thereby the impairment of cellular machinery [3].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call