Abstract

BackgroundTicks are obligate hematophagous ectoparasites that transmit a variety of pathogens to humans, wildlife and domestic animals. Vaccination is an effective and environmentally friendly method for tick control. Fructose-1,6-bisphosphate aldolase (FBA) is an important glycometabolism enzyme that is a candidate vaccine against parasites. However, the immune protection of FBA in ticks is unclear.Methods and resultsThe 1092-bp open reading frame (ORF) of FBA from Haemaphysalis longicornis (HlFBA), encoding a 363-amino acid protein, was cloned using PCR methodology. The prokaryotic expression vector pET32a(+)-HlFBA was constructed and transformed into cells of Escherichia coli BL21(DE3) strain for protein expression. The recombinant HlFBA protein (rHlFBA) was purified by affinity chromatography, and the western blot results suggested that the rHlFBA protein was immunogenic.ResultsResults of the enzyme-linked immunosorbent assay showed that rabbits immunized with rHlFBA produced a humoral immune response specific to rHlFBA. A tick infestation trial indicated that, compared to the ticks in the histidine-tagged thioredoxin (Trx) group, the engorged tick weight and oviposition of female ticks and egg hatching rate of those in the rHlFBA group was reduced by 22.6%, 45.6% and 24.1%, respectively. Based on the cumulative effect of the these three parameters, the overall immune efficacy of rHlFBA was estimated to be 68.4%.ConclusionsFBA is a candidate anti-tick vaccine that can significantly reduce the engorged tick weight, oviposition, and egg hatching rate. The use of enzymes involved in glucose metabolism is a new strategy in the development of anti-tick vaccines.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call