Abstract
Facilitative glucose transporters (GLUT) are transmembrane transporters involved in glucose transport across the plasma membrane. In this study, blunt snout bream GLUT2 gene was cloned, and its expression in various tissues and in liver in response to diets with different carbohydrate levels (17.1; 21.8; 26.4; 32.0; 36.3; and 41.9% of dry matter). Blunt snout bream GLUT2 was also characterized. A full-length cDNA fragment of 2577bp was cloned, which contains a 5'-untranslated region (UTR) of 73bp, a 3'-UTR of 992bp, and an open reading frame of 1512bp that encodes a polypeptide of 503 amino acids with predicted molecular mass of 55.046kDa and theoretical isoelectric point was 7.52. The predicted GLUT2 protein has 12 transmembrane domains between amino acid residues at 7-29; 71-93; 106-123; 133-155; 168-190; 195-217; 282-301; 316-338; 345-367; 377-399; 412-434; and 438-460. Besides, the conservative structure domains located at 12-477 amino acids belong to the sugar porter family which is the major facilitator superfamily (MFS) of transporters. Blunt snout bream GLUT2 had the high degree of sequence identity to four GLUT2s from zebrafish, chicken, human, and mouse, with 91, 63, 57, and 54% identity, respectively. Quantitative real-time (qRT) PCR assays revealed that GLUT2 expression was high in the liver, intestine, and kidney; highest in the liver and was regulated by carbohydrate intake. Compared with the control group (17.1%), fed by 3h with higher starch levels (32.0; 36.3; and 41.9%), increased plasma glucose levels and glycemic level went back to basal by 24h after treatment. Furthermore, higher dietary starch levels significantly increase GLUT2, glucokinase (GK), and pyruvate kinase (PK) expression and concurrently decrease phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) mRNA levels (P < 0.05), and these changes were also back to basal levels after 24h of any dietary treatment. These results indicate that the blunt snout bream is able to regulate their ability to metabolize glucose by improving GLUT2, GK, and PK expression levels and decreasing PEPCK and G6P expression levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.