Abstract

Bruton's tyrosine kinase (BTK) is a Tec-family tyrosine kinase and plays a crucial role in B cell antigen receptor (BCR) signal pathway. Mutations in humans and mice BTK gene results in X-linked agammaglobulinemia (XLA) and X-linked immunodeficiency (XLD), respectively. To study the function of BTK in teleost, we cloned a BTK gene from orange-spotted grouper. Homology analysis showed that the grouper BTK (EcBTK) had a high amino acid identity with other vertebrates (63%–92%) and shared the highest amino acid identity with ballan wrasse Labrus bergylta BTK. EcBTK comprises a Bruton's tyrosine kinase pleckstrin homology (PH) domain, a Tec homology (TH) domain, a Src homology 3 (SH3) domain, a Src homology 2 (SH2) domain and a Protein Kinases, catalytic (PKc) domain. Tissue distribution analysis showed that EcBTK was mainly expressed in immune organs. EcBTK was uniform distributed throughout the cytoplasm of transfected HEK293T cells and overexpression of EcBTK slightly down-regulates NF-κB activity. Ibrutinib treatment can reduce the phosphorylation level of grouper's BTK. In groupers infected with Cryptocaryon irritans, up-regulation of EcBTK were not seen in the early stage of infected skin and gill until days 14–21. The phosphorylation level of grouper BTK was significantly increased in infected skin and gill.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.