Abstract

Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call