Abstract
Ionotropic γ-aminobutyric acid (GABA)-gated chloride channel receptors mediate rapid inhibitory neurotransmission in vertebrates and invertebrates. GABA receptors are well known to be the molecular targets of synthetic insecticides or parasiticides. Three GABA receptor-like subunits, LsLCCH3, LsGRD and LS8916, of the small brown planthopper, Laodelphax striatellus (Fallén), a major insect pest of crop systems in East Asia, had been identified and characterized in this study. All three genes were cloned using the reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). They shared common structural features with known Cys-loop ligand-gated ion channels (LGICs): the well-conserved dicysteine-loop structures, an extracellular N-terminal domain containing six distinct regions (loops A–F) that form the ligand binding sites and four transmembrane regions (TM1–4). Additionally, temporal and spatial transcriptional profiling analysis indicated that Lslcch3 was significantly higher than the other two genes. All of them were expressed at higher levels in fifth-instar nymph and adults than in eggs and from first- to fourth-instar nymph. They were predominantly expressed in the heads of 2-d old female adults. These findings enhanced our understanding of cys-loop LGIC functional characterization in Hemiptera and provided a useful basis for the development of improved insecticides that targeting this important agricultural pest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.