Abstract

Cyclic nucleotide gated ion channels (CNGCs) in plants have very important role in signaling and development. The study reports role of CNGC19 and CNGC20 in salt stress in A. thaliana. In-silico, genome wide analysis showed that CNGC19 and CNGC20 are related to salt stress with maximum expression after 6 h in A. thaliana. The position of inserted T-DNA was determined (in-vivo) through TAIL-PCR for activation tagged mutants of CNGC19 and CNGC20 under salt stress. The expression of AtCNGC19 and AtCNGC20 after cloning under 35S promoter of expression vectors pBCH1 and pEarleyGate100 was determined in A. thaliana by real-time PCR analysis. Genome wide analysis showed that AtCNGC11 had lowest and AtCNGC20 highest molecular weight as well as number of amino acid residues. In-vivo expression of AtCNGC19 and AtCNGC20 was enhanced through T-DNA insertion and 35S promoter in over-expressed plants under high salt concentration. AtCNGC19 was activated twice in control and about five times under 150 mM NaCl stress level, and expression value was also higher than AtCNGC20. Phenotypically, over-expressed plants and calli were healthier while knock-out plants and calli showed retarded growth under salinity stress. The study provides new insight for the role of AtCNGC19 and AtCNGC20 under salt stress regulation in A. thaliana and will be helpful for improvement of crop plants for salt stress to combat food shortage and security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.