Abstract

Tripartite motif (TRIM) proteins were shown to play an important role in innate antiviral immunity. FinTRIM (ftr) is a new subset of TRIM genes that do not possess obvious orthologs in higher vertebrates. However, little is known about its function. In this study, we used bioinformatic analysis to examine the phylogenetic relationships and conserved domains of zebrafish (Danio rerio) ftr01, ftr42, and ftr58, as well as qualitative real-time PCR to examine their expression patterns in zebrafish embryonic fibroblast (ZF4) cells and zebrafish tissues. Sequence analysis showed that the three finTRIMs are highly conserved, and all contain a RING domain, B-box domain, and SPRY-PRY domain. In addition, ftr42 and ftr58 had one coiled-coil domain (CCD), whereas ftr01 had two CCDs. Tissue expression analysis revealed that the mRNA level of ftr01 was the highest in the liver, whereas those of ftr42 and ftr58 were the highest in the gill; the expression of these finTRIMs was clearly upregulated not in the eyes, but in the liver, spleen, kidney, gill, and brain of zebrafish following spring viremia of carp virus (SVCV) infection. Similarly, the expression of these three finTRIM genes also increased in ZF4 cells after SVCV infection. Our study revealed that ftr01, ftr42, and ftr58 may play an important role in antiviral immune responses, and these findings validate the need for more in-depth research on the finTRIM family in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.