Abstract

BackgroundEukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized.ResultsThe development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs.ConclusionWe have identified five different eEF1A genes in the Senegalese sole, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. The five genes exhibit different expression patterns in tissues and during larval development. TU and T4 treatments demonstrate that SseEF1A4 is up-regulated by THs, suggesting a role in the translational regulation of the factors involved in the dramatic changes that occurs during Senegalese sole metamorphosis.

Highlights

  • Eukaryotic elongation factor 1 alpha is one of the four subunits composing eukaryotic translation elongation factor 1

  • Molecular characterization of Senegalese sole Eukaryotic elongation factor 1 alpha (eEF1A) genes Five Senegalese sole eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50, were identified after Expressed sequence tags (ESTs) analysis of a normalized cDNA library constructed from different larval stages, undifferentiated gonads, and six adult tissues

  • A total of 69, 10, 3, 1 and 4 clones were identified as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4 and Sse42Sp50, respectively [DDBJ:AB326302 to AB326306]

Read more

Summary

Introduction

Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. Additional regulatory proteins are often required to induce the conformational changes that occur during this cycle: guanine nucleotide exchange factors, which catalyze release of bound GDP and promote its replacement by GTP, and GTPase-activating proteins, which accelerate GTP hydrolysis. Such transition between active and inactive forms allows for them to serve as molecular switches and to make G proteins suitable for the regulation of a wide range of cellular processes such as signal transduction, cytoskeletal reorganizations, vesicular transport and protein synthesis [4]. It is likely that this broad diversity of functions may explain why eEF1A is such a well-conserved protein in eukaryotic organisms

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call