Abstract

Members of the plant glycine-rich RNA-binding protein (GR-RBP) family play diverse roles in regulating RNA metabolism for various cellular processes. To understand better their function at the molecular level in stress responses, we cloned a GR-RBP gene, MhGR-RBP1, from Malus hupehensis. Its full-length cDNA is 558 bp long, with a 495-bp open reading frame, and it encodes 164 amino acids. The deduced amino acid sequence contains an RNA-recognition motif (RRM) at the amino terminal and a glycine-rich domain at the carboxyl terminal; these are highly homologous with those from other plant species. Multiple alignment and phylogenetic analyses show that the deduced protein is a novel member of the plant GR-RBP family. To characterize this gene, we also applied a model for predicting its homology of protein structure with other species. Both organ-specific and stress-related expression were detected by quantitative real-time PCR and semi-quantitative RT-PCR, indicating that MhGR-RBP1 is expressed abundantly in young leaves but weakly in roots and shoots. Transcript levels in the leaves were increased markedly by drought, hydrogen peroxide (H(2)O(2)), and mechanical wounding, slightly by salt stress. Furthermore, the transcript is initially up- and down-regulated rapidly within 24h of abscisic acid (ABA) treatment. After 24h of ABA and jasmonic acid (JA) treatments with different concentrations, the transcript levels of MhGR-RBP1 were significantly repressed. These results suggest that MhGR-RBP1 may be involved in the responses to abiotic stresses, H(2)O(2), ABA, or JA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call