Abstract

BackgroundCarbapenem resistance among Acinetobacter species has become a life-threatening problem. As a last resort in the treatment of gram-negative bacteria infection, resistance to colistin is also a serious problem. The aim of study was to analyze the mechanism of resistance and perform genotyping of carbapenem-resistant Acinetobacter from clinical infection and fecal survey samples in Southern China.MethodsOne hundred seventy and 74 carbapenem-resistant Acinetobacter were isolated from clinical infection samples and fecal survey samples, respectively. We detected the related genes, including carbapenemase genes (blaKPC, blaIMP, blaSPM, blaVIM, blaNDM, blaOXA-23-like, blaOXA-24/40-like, blaOXA-51-like, and blaOXA-58-like), colistin resistance-related genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5), a porin gene (carO), efflux pump genes (adeA, adeB, adeC, adeI, adeJ, and adeK), mobile genetic element genes (intI1, intI2, intI3, tnpU, tnp513, IS26, ISAba1, and ISAba125), and the integron variable region. Genotyping was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and dendrogram cluster analysis.ResultsAmong the 244 carbapenem-resistant Acinetobacter, the common carbapenemase-positive genes included the following: blaOXA-51-like, 183 (75.00%); blaOXA-23-like, 174 (71.30%); blaNDM-1, 57 (23.40%); and blaOXA-58-like, 30 (12.30%). The coexistence of mcr-1 and blaNDM-1 in five strains of A. junii was found for the first time. Eleven distinct carO gene variants were detected in 164 (67.20%) strains, and ten novel variants, which shared 92–99% identity with sequences in the Genbank database, were first reported. Efflux system genes were present in approximately 70% of the isolates; adeABC and adeIJK were observed in 76.23 and 72.13%, respectively. Class 1 integrons were detected in 180 (73.80%) strains and revealed that four gene cassette arrays contained 11 distinct genes. The genotyping by ERIC-PCR demonstrated a high genetic diversity of non-baumannii Acinetobacter, and greater than 90% similarity to A. baumannii.ConclusionsThe blaNDM-1 gene was identified in up to 77% of the carbapenem-resistant Acinetobacter isolated from fecal survey samples, indicating that the gut might be a reservoir of resistant opportunistic bacteria. Intestinal bacteria can be transmitted through the fecal-hand, which is a clinical threat, thus, the monitoring of carbapenem-resistant bacteria from inpatients’ feces should be improved, especially for patients who have been using antibiotics for a long time.

Highlights

  • Carbapenem resistance among Acinetobacter species has become a life-threatening problem

  • Acinetobacter species are a heterogeneous group of strictly aerobic, non-motile gram-negative, nonfermenting encapsulated coccobacilli that can be found in the environment [1, 2]

  • Acinetobacter baumannii has become a major cause of nosocomial infections in recent years

Read more

Summary

Introduction

Carbapenem resistance among Acinetobacter species has become a life-threatening problem. As a last resort in the treatment of gram-negative bacteria infection, resistance to colistin is a serious problem. Acinetobacter baumannii has become a major cause of nosocomial infections in recent years. Infection caused by Acinetobacter species other than A. baumannii has caused concern recently [5]. The developed resistance of Acinetobacter to a variety of commonly used antimicrobials has led to ineffective antibiotics and increased mortality following infection [6]. Carbapenems are commonly used to treat infections caused by Acinetobacter species; an outbreak of carbapenem-resistant Acinetobacter species can complicate therapy and may lead to treatment failure [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call