Abstract

BackgroundOver 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions.ResultsDiagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally.ConclusionsThis study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in humans, other mammals, the environment, and water in this highly impoverished area.

Highlights

  • Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation

  • The diarrhoeal disease caused by Cryptosporidium parvum, that is transmitted from cattle to humans and vice versa, is responsible for economic losses in livestock animals, calves, linked to mortality, morbidity, and subsequent humaninfections as a consequence of poor hygiene [2]

  • Cryptosporidium, Giardia and Entamoeba were detected in individual faecal samples from mountain gorillas, humans, and livestock from in and around Bwindi Impenetrable National Park (BINP), while Cyclospora was not detected in any of the samples analysed

Read more

Summary

Introduction

Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zoonoses are often considered as infectious diseases (IDs) acquired by humans via (in)direct contact with animal species that act as carriers of the infective agents. There is increasing evidence for the transmission of IDs from humans to livestock and wildlife species [1]. Given the ‘threatened’ status of many wildlife species which are already at risk from anthropogenic activities (i.e. illegal hunting, habitat modification), the increased threat of disease transmission from humans and livestock animals, and subsequent changes to host-parasite dynamics because of smaller habitat ranges imposes unnecessary risks on their continued survival

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call