Abstract

The original objectives of the approved proposal included: (a) The determination of species- and tissue-specificity of the PBAN-R; (b) the elucidation of the role of juvenile hormone in gene regulation of the PBAN-R; (c) the identificationof the ligand binding domains in the PBAN-R and (d) the development of efficient screening assays in order to screen potential antagonists that will block the PBAN-R. Background to the topic: Moths constitute one of the major groups of pest insects in agriculture and their reproductive behavior is dependent on chemical communication. Sex-pheromone blends are utilised by a variety of moth species to attract conspecific mates. In most of the moth species sex-pheromone biosynthesis is under circadian control by the neurohormone, PBAN (pheromone-biosynthesis-activating neuropeptide). In order to devise ideal strategies for mating disruption/prevention, we proposed to study the interactions between PBAN and its membrane-bound receptor in order to devise potential antagonists. Major conclusions: Within the framework of the planned objectives we have confirmed the similarities between the two Helicoverpa species: armigera and zea. Receptor sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the C-terminal. Our findings indicate that PBAN or PBAN-like receptors are also present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. Surprisingly the gene encoding the PBAN-receptor was also present in the male homologous tissue, but it is absent at the protein level. The presence of the receptor (at the gene- and protein-levels), and the subsequent pheromonotropic activity are age-dependent and up-regulated by Juvenile Hormone in pharate females but down-regulated by Juvenile Hormone in adult females. Lower levels of pheromonotropic activity were observed when challenged with pyrokinin-like peptides than with HezPBAN as ligand. A model of the 3D structure of the receptor was created using the X-ray structure of rhodopsin as a template after sequence alignment of the HezPBAN-R with several other GPCRs and computer simulated docking with the model predicted putative binding sites. Using in silico mutagenesis the predicted docking model was validated with experimental data obtained from expressed chimera receptors in Sf9 cells created by exchanging between the three extracellular loops of the HezPBAN-R and the Drosophila Pyrokinin-R (CG9918). The chimera receptors also indicated that the 3ʳᵈ extracellular loop is important for recognition of PBAN or Diapause hormone ligands. Implications: The project has successfully completed all the objectives and we are now in a position to be able to design and screen potential antagonists for pheromone production. The successful docking simulation-experiments encourage the use of in silico experiments for initial (high-throughput) screening of potential antagonists. However, the differential responses between the expressed receptor (Sf9 cells) and the endogenous receptor (pheromone glands) emphasize the importance of assaying lead compounds using several alternative bioassays (at the cellular, tissue and organism levels). The surprising discovery of the presence of the gene encoding the PBAN-R in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these GPCRs. Overall this research will advance research towards the goal of finding antagonists for this important class of receptors that might encompass a variety of essential insect functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.