Abstract

Biologically active, artificially synthesized two-peptide bacteriocin PlnEF was used to study its mode of action on sensitive bacteria Lactobacillus plantarum pl2. The data obtained showed that PlnEF induced membrane permeabilization, allowing for the efflux of electrolytes, which was evidenced by the increased extracellular conductivity, the dissipation of transmembrane electrical potential and pH gradient, and rapid intracellular ATP depletion after L. plantarum pl2 cells were treated with PlnEF for minutes. Laser confocal microscopy showed that PlnEF accumulated very quickly in L. plantarum pl2 cells and the accumulation of PlnEF caused damage to cell membrane. Scanning electron microscopy and transmission electron microscopy further showed that PlnEF induced morphological changes and structure disruption to L. plantarum pl2 cells, such as the formation of blebs, microspheres, membrane deformation and cell lysis. In summary, the data obtained show that PlnEF caused cell membrane damage to L. plantarum pl2 cells. Our study reveals the antimicrobial mechanism of two-peptide bacteriocin PlnEF against L. plantarum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.