Abstract

We have been studying the formation of hydrogel nanoparticles by the self-aggregation of hydrophobized polysaccharide and the effective complexation between these nanoparticles as a host and various globular soluble proteins as a guest. This paper describes a new finding that refolding of the heat-denatured enzyme effectively occurs with the nanoparticles and beta-cyclodextrin according to a mechanism similar to that of a molecular chaperone. In particular, the irreversible aggregation of carbonic anhydrase B (CAB) upon heating was completely prevented by complexation between the heat-denatured enzyme and hydrogel nanoparticles formed by the self-aggregation of cholesteryl group-bearing pullulan (CHP). The complexed CAB was released by dissociation of the self-aggregate upon the addition of beta-cyclodextrin. The released CAB refolded to the native form, and almost 100% recovery of the activity was achieved. The thermal stability of CAB was drastically improved by capture of the unfolded form which was then released to undergo refolding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.