Abstract

We have characterized the structural changes in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of 14 UV-induced, 15 γ-ray-induced and 17 spontaneous mutants of human lymphoblastoid cells selected for 6-thioguanine (6TG) resistance. Southern blot analysis using the full-length HPRT cDNA as a probe revealed that 29% (5/17) of the spontaneous mutants contained detectable alterations in their restriction fragment patterns. Among the 15 mutants induced by γ rays, 7 (47%) had such alterations indicative of large deletions in the HPRT gene. In contrast, all 14 UV-induced mutants exhibited hybridization patterns indistinguishable from those of the wild-type cells. These results suggest that UV is likely to induce point mutations at the HPRT locus on the human chromosome and that the molecular mechanism of UV-induced mutation is quite different from that of ionizing radiation-induced mutation or spontaneous mutation in human cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call