Abstract

Charcot-Marie-Tooth disease (CMT), also named hereditary motor and sensory neuropathies, includes a clinically and genetically heterogeneous group of disorders affecting the peripheral nervous system. Traditionally, the different classes of CMT have been divided into demyelinating forms (CMT1, CMT3, and CMT4) and axonal forms (CMT2), a clinically very useful distinction. However, investigations of the underlying molecular and cellular disease mechanisms, mainly accomplished using cell culture and animal models, as well as specific re-examination of appropriate patient cohorts, have revealed that the pathological signs of myelinopathies and axonopathies are often intermingled. These findings, although only recently fully appreciated, are not surprising given the dependence and intimate cellular interactions of Schwann cells and neurons, mainly during nerve development and, as indicated by the pathology of CMT, also in the adult organism. This review is intended to summarize our current knowledge about the molecular and cellular basis of CMT, with a particular emphasis on the role of Schwann cell/axon interactions. Such a view is particularly timely since approximately ten genes have now been identified as culprits in different forms of CMT. This collection revealed novel crucial players in the interplay between Schwann cells and neurons. The analysis of these genes and their encoded proteins will provide additional insights into the molecular and cellular basis of neuropathies and valuable information about the biology and interactions of Schwann cells, their associated neurons, endoneurial fibroblasts, and the nerve-surrounding and protecting perineurial sheath.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.