Abstract

Methods of calculating the protein molecular surface and different map representations are described. The maps are obtained by projection of the space-filling molecular model on the surface of the ellipsoid of inertia. A new approach to surface analysis is proposed which is based on the use of three general maps: an identification map with all residues outlined, a surface relief map and a coloured map with a specific colour for each of the surface atoms. Superposition of these maps greatly simplifies molecular surface analysis. The usefulness of such an approach has been demonstrated by the study of the relief of the calf eye lens protein gamma-crystallin II. Protrusions of the relief have been shown to be occupied generally by charged residues, but in some cases by the hydrophobic ones. It is interesting to note that in crystal medium the protruding residues are involved, in the majority of cases, in intermolecular contacts. The protruding regions have been found to be pseudosymmetrical to each other in accordance with the two-fold rotation axis of the molecule. However, the colours of these regions, i.e. the atoms of the corresponding side chains, differ greatly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.