Abstract

Owing to the presence of the recurring sequence XPGX' (where X and X' are hydrophobic residues), the molecular structure of the sequences between cross-links in elastin is viewed primarily as a series of beta-turns which become helically ordered by hydrophobic folding into beta-spirals, which in turn assemble hydrophobically into twisted filaments. Both hydrophobic folding and assembly occur when the temperature is raised above Tt, the onset of an inverse temperature transition. Using poly[fv(VPGVG),fx(VPGXG)] (where fv and fx are mole fractions with fv + fx = 1 and X is now any of the naturally occurring amino acid residues), plots of fx versus Tt result in a new hydrophobicity scale based directly on the hydrophobic folding and assembly processes of interest. With the reference values chosen at fx = 1, the most hydrophobic residues of elastin, Tyr (Y) and Phe (F), have low values of Tt, -55 and -30 degrees C, respectively, and the most hydrophilic residues, Glu (E-), Asp (D-) and Lys (K+), have high values of 250, 170 and 120 degrees C, respectively. Raising the average value of Tt for a chain or chain segment from below to above physiological temperature drives hydrophobic unfolding and disassembly; lowering Tt does the reverse. This delta Tt mechanism has been used reversibly to interconvert many energy forms and is used here to explain initiating events of elastogenesis, pulmonary emphysema, solar elastosis and the paucity of elastic fibres in scar tissue. In general, oxidation and/or photolysis convert(s) hydrophobic residues into polar residues with the consequences of irreversibly raising Tt to above 37 degrees C, hydrophobic unfolding and disassembly (fibre swelling), and greater susceptibility to proteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.