Abstract
Although mycoplasmas lack cell walls, they are in many respects similar to the gram-positive bacteria with which they share a common ancestor. The molecular biology of mycoplasmas is intriguing because the chromosome is uniquely small (< 600 kb in some species) and extremely A-T rich (as high as 75 mol% in some species). Perhaps to accommodate DNA with a lower G + C content, most mycoplasmas do not have the "universal" genetic code. In these species, TGA is not a stop codon; instead it encodes tryptophan at a frequency 10 times greater than TGG, the usual codon for this amino acid. Because of the presence of TGA codons, the translation of mycoplasmal proteins terminates prematurely when cloned genes are expressed in other eubacteria, such as Escherichia coli. Many mycoplasmas possess strikingly dynamic chromosomes in which high-frequency changes result from errors in DNA repair or replication and from highly active recombination systems. Often, high-frequency changes in the mycoplasmal chromosome are associated with antigenic and phase variation, which regulate the production of factors critical to disease pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annual Review of Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.