Abstract

Epoxies are widely used as main components in packaging underfills for microelectronics. Their strong adhesion to different substrate materials is an important factor for the functioning of electronic devices. Amines are commonly used cross-linking agents for epoxides. However, the molecular mechanisms of epoxide-amine mixture adhesion to substrate materials remain unclear. In this research we investigated the adhesion mechanism of epoxide-amine mixtures at poly(ethylene terephthalate) (PET) interfaces using attenuated total-internal reflection Fourier transform infrared (ATR-FTIR) spectroscopy and sum frequency generation (SFG) vibrational spectroscopy. Results show that both epoxide and amine could diffuse into the PET film. They could also dissolve or modify the PET film at the interphase region. In the process of epoxy curing on PET, epoxide molecules could cross-link with the modified PET film, providing strong adhesion. This hypothesis was further confirmed by adding reactive and nonreactive silanes to the epoxies and measuring the adhesion strengths of such mixtures to PET. The reactive silanes could cross-link with the system, showing good adhesion, while the nonreactive silane prevented sufficient cross-linking, showing poor adhesion. This research developed an in-depth insight for molecular behaviors at the epoxy/PET interface which helped clarify the related adhesion mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.