Abstract

Features of the growth of InAs quantum dots in an Al0.35Ga0.65As matrix by molecular beam epitaxy at different substrate temperatures, deposition rates, and amounts of deposited InAs are studied. The optimum conditions for growing an array of low-density (≤2 × 1010 cm−2) small (height of no more than 4 nm) self-organized quantum dots are determined. The possibility of the formation of optically active InAs quantum dots emitting in the energy range 1.3–1.4 eV at a distance of no more than 10 nm from the coherent heterovalent GaAs/ZnSe interface is demonstrated. It is established that inserting an optically inactive 5-nm GaAs quantum well resonantly coupled with InAs quantum dots into the upper AlGaAs barrier layer enhances the photoluminescence efficiency of the quantum-dot array in hybrid heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call