Abstract
The molecular beam epitaxy growth and optical properties of the III-V semiconductor alloy InAsSbBi are investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on the (100) on-axis and offcut GaSb substrates are examined. Bismuth readily incorporates at growth temperatures around 300 °C but results in materials with limited optical quality. Conversely, higher growth temperatures around 400 °C yield improved optical performance but with limited Bi incorporation. Photoluminescence spectroscopy is used to examine the optical properties and bandgap energies of InAsSbBi layers grown at temperatures from 400 to 430 °C using 0.91 and 0.94 As/In flux ratios, 0.10 and 0.12 Sb/In flux ratios, and 0.05 and 0.10 Bi/In flux ratios. Emission is observed from low to room temperature with peaks ranging from 3.7 to 4.6 μm. The relationships between Bi incorporation, surface morphology, growth temperature, and group-V flux are examined. Large concentrations of Bi-rich surface features are observed on samples where the incident Bi flux neither fully incorporates nor desorbs but instead accumulates on the surface and coalesces into droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.