Abstract

We report on the first successful growth of the ternary-alloy CdSexTe1−x(211) on 3-in. Si(211) substrates using molecular-beam epitaxy (MBE). The growth of CdSeTe was performed using a compound CdTe effusion source and an elemental Se effusion source. The alloy composition (x) of the CdSexTe1−x ternary compound was controlled through the Se:CdTe flux ratios. Our results indicated that the crystalline quality of CdSeTe decreases as the alloy composition increases, which is possibly due to an alloy-disordering effect. A similar trend was observed for the CdZnTe ternary-alloy system. However, the alloy-disordering effect in CdSeTe was found to be less severe than that in CdZnTe. We have carried out the growth of CdSeTe on Si at different temperatures. An optimized growth window was established for CdSeTe on Si(211) to achieve high-crystalline-quality CdSeTe/Si layers with 4% Se. The as-grown layers exhibited excellent surface morphology, low surface-defect density (less than 500 cm−2), and low x-ray full width at half maximum (FWHM) values near 100 arcsec. Additionally, the CdSeTe/Si layer exhibited excellent lateral uniformity and the best etched-pit density (EPD) value on a 4% CdSeTe, measured to be as low as 1.4 × 105 cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.